Adjusting VHR GMPEs to BC (importance of κ_0)

David M. Boore (in collaboration with Ken Campbell)

USGS National Seismic Hazard Map (NSHMp)
Workshop on Ground Motion Prediction
Equations (GMPEs)

for the 2014 Update

December 12-13, 2012

I-House, Berkeley, CA

CENA Models used in 2008 USGS NSHMs (Petersen et al., 2008)

Model	Site	κ_0 for BC amps or VHR—BC conversion	_	
Frankel et al.	ВС	0.01	_]	Used same S-wave velocity model
Atkinson & Boore	ВС	0.02	}	
Toro et al.	VHR	0.01		
Somerville et al.	VHR	0.01		
Silva et al.	VHR	0.01		
Campbell	VHR	0.01		
Tavakoli & Pezeshk	VHR	0.01		

Issue: Method of Site Amp Computation

Issue: Vs(z) and κ_0 for CENA Sites

Slowness Profiles for V_{s30}=760 m/s
Sites in the central and eastern North
America (plus
Pinyon Flat, a possible surrogate for a BC site CENA)

Slowness Profiles for V_{s30}=760 m/s KiK-net Sites (plus Pinyon Flat, a possible surrogate for a BC site CENA)

Note κ_0 for KiK-net

κ_0 for Pinyon Flat

Issue: Site Amps for CENA sites with V_{s30}^{760} m/s compared to Fea96 Vs(z)

Note: Effect of κ_0 not shown, because it is the same for each amp curve

Summary

- VHR—BC adjustment is sensitive to κ_0
- κ_0 =0.01 s used by USGS seems to be low
- VHR—BC adjustment can depend on
 - Velocity profile
 - Method of site amplification computation

Fini

Comparison of square-root impedance and full resonance amplifications

